Справочник автора/Радиоактивность и радиация

Материал из Posmotre.li
Перейти к: навигация, поиск

Радиация (в переводе с латинского — излучение) — общий (и немного корявый) термин для различных видов ионизирующего излучения, т. е. излучения, способного выбивать электроны из атомов или взаимодействовать с атомными ядрами[1]. Именно ионизация приводит к тем, полезным или вредным, химическим превращениями (образование свободных радикалов, разрушение или «сшивание» молекул), которые в итоге и считаются «эффектом радиации». Радиоактивность — способность изотопов химических элементов самопроизвольно распадаться и излучая ионизирующие частицы, один из видов ядерной реакции. Радиоактивные вещества являются наиболее известным, но не единственным источником радиации.

Виды радиации[править]

Широко известные[править]

  • Альфа-радиация: поток ионов He2+ (оголённых ядер гелия), также называемых альфа-частицами. Из-за большого заряда и относительно малой скорости быстро теряют энергию в веществе, поэтому проникающей способностью практически не обладает: легко останавливается алюминиевой фольгой, бумагой и даже не слишком толстым слоем воздуха. Опасность для человека представляет только в том случае, если он что-нибудь альфа-радиоактивное съест, вдохнёт или вмажется. Но вот тогда ему по той же причине придётся худо: из-за большой потери энергии альфа-частицы нанесут немалую разруху клеткам, через которые смогли пролететь. Альфа-радиоактивность широко распространена среди изотопов самых разных элементов обычно тяжёлых.
  • Бета-радиация: поток электронов (электроны вылетающие при радиоактивном распаде также называются бета-частицами). Обладает средней проникающей способностью, в зависимости от энергии существенно поглощается толстой фольгой и полностью останавливается любой специальной преградой для радиации. Опасность для человека представляет на открытых участках тела, особенно на роговице глаз и слизистой - там, где живые клетки напрямую контактируют с окружающим воздухом. Поглощать бета-радиацию и преобразовать ее в безвредный свет могут специальные люминофоры: на этом основана технология т. н. тритиевой подсветки (тритий, то есть бета-активный изотоп водорода, помещается в колбочку, смазанную изнутри люминофором, которая светится)[2]. При торможении в веществе может генерировать заметно более проникающую гамму. Бета-радиоактивность также широко распространена среди различных изотопов: практически все радиоактивные изотопы делятся на испускающие альфа-частицы и бета-частицы. Электроны, разогнанные в ускорителях или прилетевшие из космоса, могут иметь намного большую энергию и проникающую способность.
  • Гамма-радиация: поток очень высокоэнергетических фотонов. Имеет ту же природу, что и обычный свет, но очень малую длину волны, очень высокую частоту и энергию. Это самая стереотипная радиация: большинство из известных народу штампов про радиацию относится именно к гамме. Это от неё прячутся в ямах и подвалах в случае ядерной войны, это от неё спасаются слоями свинца. Обладает высокой проникающей способностью. Гамма-лучи различной интенсивности испускают многие радиоактивные изотопы вдобавок к альфе или бете; чисто гамма-активными изотопы не бывают. [3].
    • Рентгеновские лучи: то же, что и гамма, но труба пониже и дым пожиже. Те же фотоны, только несколько менее энергичные. Рентгеновские лучи не порождаются изотопами: для их получения используются специальные приборы — трубки. Но они обладают большинством свойств гамма-излучения. Именно поэтому врачи-рентгенологи нахватываются рентген, а на пациентов надевают свинцовые фартуки. В целом имеют заметно меньшую проникающую способность, но вот сама интенсивность излучения может быть намного выше, чем гамма от куска радиоактивного изотопа.
    • Ещё пониже и пожиже дальний ультрафиолет, граничащий с рентгеном и в норме задерживаемый озоновым слоем. Уже не радиация, но может вызывать ожоги и рак кожи. А вот ближний ультрафиолет, пропускаемый озоновым слоем и близкий к обычному свету, уже практически не опасен, если, конечно, у тебя не «синдром вампира» (альбиносам и представителям кельтского типа, чья кожа физически не способна загореть в дневное время, тоже нудизмом лучше не заниматься).

Более экзотические[править]

  • Протонная радиация: поток протонов, или оголённых ядер водорода, или ионов H+. Довольно редко встречается в природе, по свойствам — среднее между альфой и бетой, более ничем не примечательна.
  • Кластерная радиация: поток ядер тяжелее, чем гелиевые. Те самые Тяжёлые Заряженные Частицы, на которые удобно сваливать косяки строителям спутников. Очень редкий вид, в основном безвреден по причине своей редкости и ещё меньшей проникающей способности, чем у альфы. Кластерные частицы, скорее всего, вообще не сумеют вылететь за пределы куска делящегося материала, а те, что вылетят — будут остановлены воздухом и недобрым взглядом физика-ядерщика. Однако это при энергиях характерных для ядерного распада. Хорошо разогнанные в ускорителе или прилетевшие из космоса высокооэнергетические тяжелые частицы могут иметь огромную энергию, большую проникающую способной, в при прохождении через вещество создавать целые ливни вторичных частиц. В таком виде, по сравнению с простой гаммой они выглядят как снаряд главного калибра «Айовы» по сравнению с бронебойной пулей. Плюс, кластерная радиоактивность всегда встречается одновременно с каким-то другим видом радиоактивности.
  • Нейтронная радиация: поток нейтронов — пожалуй, самый «неудобный» вид радиации. Если гамму можно сравнить с пулей с бронебойным сердечником, альфу — с картечиной из гладкоствольного ружья, то нейтрон будет гранатой с горящим фителём. По причина отсутствия заряда останавливается он заметно хуже беты с альфой, причём нашпигованный множеством электронов свинец тут не лучшая защита: для защиты от нейтронов нужны, наоборот, толстые слои чего-нибудь мелкоатомного, типа воды или органики (например, парафин). Более того, остановив нейтрон, от проблем вы ещё не избавились — он вполне может блуждать с низкой скоростью по веществу, пока прицепится к ядру, сделав его радиоактивным, или на худой конец распадётся сам на протон и бета-частицу. Не всё облучённое нейтронами обязательно станет радиоактивным, но список широк. Поэтому, после замедления его желательно поймать чем-то специфическим вроде ядра бора или кадмия. Именно такое сочетание высокой проникающей способности, возможности активировать материалы и «неудобными» методами защиты делает нейтронное излучение чертовски неприятной штукой. При обычном радиоактивном распаде нейтронная радиация выделяется в редких случаях: чтобы её получить, нужды ядерные реакции деления, синтеза или специальные «бутерброды» из изотопов.
  • Нейтрино: несмотря на похожее название с предыдущим видом, это его полная противоположность — поток маленьких, пофигистичных частиц. Нейтринное излучение крайне слабо поглощается веществом, поэтому практически никак не действует на живое или неживое, и, чтобы его обнаружить, нужны специальные громоздкие детекторы и большие потоки нейтрино. Поэтому обычно нейтринное излучение радиацией не считается (т. к. не порождает ионов и не влияет на ядра), несмотря на то, что всегда сопутствует бета-активности.
  • Античастицы (позитроны aka бета-плюс, антипротоны). При радиоактивном распаде образуются довольно редко. Во всём подобны соответствующим частицам, кроме двух дополнительных свойств: во-первых, имеют противоположный электрический заряд, во-вторых, способны аннигилировать с соответствующими частицами и превращаться в довольно жёсткое гамма-излучение.

Что НЕ ЯВЛЯЕТСЯ радиацией?[править]

  • Микроволны и радиоволны. Невежественными людьми причисляются к лику радиации[4], отчего и можно порой услышать истерические возгласы о радиоактивности микроволновых печей или сотовых телефонов. На самом деле что те, что другие — суть фотоны с ещё более низкой энергией, чем видимый свет, они не могут ни ионизировать, ни участвовать в ядерных реакциях. Микроволны находятся посерёдке между инфракрасным, то есть тепловым, излучением, и радиоволнами, именно потому они так хороши для нагрева. Да и мощная военная РЛС тоже способна зажарить испечь не соблюдающего технику безопасности, однако делает это настолько медленно, что обычно все последствия для стоявшего слишком близко к мощной антенне ограничиваются «печёными яйцами», которые через некоторое несколько месяцев приходят в норму (правда, не всегда: например, могут испечься глаза[5]). Впрочем, случаи, когда летящие птицы внезапно массово упали замертво, объясняют тем, что чересчур переборщили, подав избыточно большую мощность на радар раннего предупреждения об атаке баллистическими ракетами (рядом с такими радарами на много километров вокруг нет ни одного гражданского, потому что это стратегический, строго охраняемый объект, располагаемый в глуши и в отдалении от населённых пунктов).

Как радиация получается[править]

  • От радиоактивных элементов или изотопов. Самое известное ее происхождение. Суть в том, что лишь ограниченное число конфигураций протонов и нейтронов в атомных ядрах стабильно. Все остальные неустойчивы и самопроизвольно распадаются, порождая радиацию. Это и называется радиоактивностью.
    • Интенсивность радиоактивного распада элементов имеет не постоянную, а экспоненциальную зависимость: у каждого радиоактивного ядра есть какая-то вероятность распасться, и чем больше атомов элемента, тем больше распадов в единицу времени. Поэтому не говорят о периоде полного распада какого-то элемента, а говорят о периоде полураспада. То есть о периоде, за который от исходного количества атомов остаётся ровно половина. Если подождать ещё один период полураспада, то от оставшейся половины тоже останется половина, то есть четверть от исходного. После трёх периодов полураспада — одна восьмая. Чем меньше период полураспада, тем интенсивнее излучаемая радиация.
      • Поправка. Радиоактивный распад ядра — понятие вероятностное, а не линейное, период полураспада — это такой промежуток времени, что вероятность распадения каждого ядра за него составляет 50 %. По прошествии этого периода «ровно половина» ядер останется нераспавшейся с такими же шансами, с какими из груды подброшенных монет ровно половина выпадет орлом. Однако когда атомов очень много, из большого количества радиоактивного вещества один за период полураспада распадётся количество ядер, очень близкое к 50%.
  • От ядерных взрывов и реакторов. Основной источник нейтронного излучения.
  • Из космоса. В космосе летает огромное количество разнообразных частиц. Тут полный зоопарк: и протоны, и электроны, и позитроны, и всякая вконец экзотическая шушера типа мюонов или мезонов. Правда, гаммы довольно мало, а нейтронов, к счастью, практически нет, потому что в свободном виде нейтрон неустойчив, имеет период полураспада в 10 минут и космические расстояния преодолевать просто не успевает[6]. Образуется вся эта музыка в звёздных ядерных реакциях. Два основных вида: солнечный ветер (то есть лучи добра от ближайшей звезды — довольно низкоэнергетические, но их много) и собственно космические (долетающие из дальнего космоса, их мало, но они очень быстрые и проникающие). У планет, обладающих магнитным полем, например, Земли и Юпитера, есть радиационные пояса, в которых за счёт этого самого поля улавливаются и концентрируются частицы. Радиация там значительно сильнее, чем во всём остальном космосе.
    • А вот возле ярко-голубых звёзд радиация сильнее и жёстче, как и в двойных системах с нейтронной звездой, особенно если на нейтронную звезду падает вещество. Нейтронные звезды также интересны вот чем: они настолько горячи, что их тепловое излучение доходит до рентгеновского диапазона. Также до рентгена и гаммы накаляется вещество, падающее в чёрные дыры.

Что от неё бывает[править]

Если кратко — ничего хорошего. От радиации нельзя стать супергероем, суперзлодеем или существом, превращающим людей в супергероев с помощью укуса. Также от неё не вырастает щупалец, третьих ног и шестых пальцев. А что же от нее можно схватить?

  • Лучевую болезнь. Её основные симптомы — это разрушение костного мозга, отравление радиотоксинами — продуктами расщепления тушки радиацией (обломками белков и жиров, раздолбанных частицами), расстройства пищеварения и нервной системы. Самое опасное в этом списке — первое: костный мозг является кроветворным органом, и при его разрушении производство новых кровяных клеток останавливается и кровь быстро превращается в водицу. Отчего и наступает смерть.
  • Рак. Случайное и не гарантированное, но очень неприятное последствие облучения.
  • Генные мутации и хромосомные аберрации. Вот они, добрались до самой мякотки. На самом облучённом человеке они в основном никак не проявляются (если проявляются, то всё тем же раком), зато встают в полный рост при рождении потомства. И в большинстве случаев приводят к тому, что ребёнок просто не рождается, а происходит выкидыш или мертворождение. Или рождается, но хронически больной.
    • Яички легко поражаются, но после поражения спустя время относительно восстанавливаются (разумеется, шансы на рождения дефектного ребёнка и после «восстановления» не возвращаются к уровню непострадавшего человека). Почему так? Яички находятся вне тела и защищены только тонким слоем кожи. Так природа захотела, ибо спермогенез лучше протекает при температуре ниже температуры тела на градус. Поэтому так популярна шутка о просвинцованных трусах. При этом сам спермогенез — процесс постоянно обновляющийся: в процессе митоза все новые и новые клетки делятся напополам и образуют сперматозоиды. Миллионами. И если яички не были поражены фатально, т. е. до полной неспособности производить сперматозоиды, то шансы произвести здоровое потомство ненамного ниже среднего.
    • Яичники трудно поразить, но если уж они поражены — значит, отхватили дозу, от которой не восстановиться. Почему так? Женщина уже рождается с полным набором яйцеклеток. В дальнейшем часть из них будет понемногу созревать и каждый месяц покидать организм по нескольку штук за раз, а часть просто отомрёт, не достигнув созревания. Яичники спрятаны глубоко внутри тела и хорошо защищены — плюс. Минус в том, что клетки тела сами по себе не защита от тяжёлых частиц, и если яйцеклетка разрушится, то новой взять негде, а если под бомбёжку радиацией попал весь орган целиком — то он пострадает невосстановимо. Впрочем, учитывая, что тяжёлое облучение обычно приходится на весь организм, «пострадает невосстановимо» означает ещё и физическую невозможность выносить вообще какого-либо ребёнка и большие-пребольшие проблемы с гормональной системой на всю оставшуюся недолгую жизнь.

В чём измеряется облучение?[править]

Есть единицы для измерения экспозиционной, поглощённой дозы и эквивалентной дозы. Разница между ними заключается в способе измерения, вкратце так: эквивалентная доза измеряется по последствиям для организма, которые сравниваются с последствиями от некой эталонной дозы облучения. Поглощённая доза измеряется по замерам энергии излучения и массы вещества, которое его поглотило. Экспозиционная — по подсчёту ионов в сухом воздухе. Какие единицы чему соответствуют?

Рентген — единица экспозиционной дозы. В эквивалентной дозе рентгену соответствует бэр, в поглощённой дозе — рад. Для обывателя рентген, бэр и рад — примерно одно и то же. Зиверт — единица эквивалентной дозы. В поглощённой дозе зиверту соответствует грэй. Для обывателя между зивертом и грэем также разницы особой нет.

1 Зв = 100 бэр. 1 Гр = 100 рад.

В общем, вторые две единицы в сто раз больше первых трёх.

Какая доза чем грозит? Вот несколько примерных доз и их последствия:

  • 5 рентген: предельно допустимая «безвредная» доза в год для людей, работающих с радиацией или рентгеновскими аппаратами.
  • 25 рентген: предельно допустимая доза, которую можно однократно схватить как «оправданный риск» в особых обстоятельствах. Может вызвать лёгкую лучевую болезнь.
  • 100 рентген: начало тяжёлой лучевой болезни, поражение костного мозга.
  • 300—500 рентген: примерно каждого второго, схватившего такую дозу, спасти не удаётся. Основной фактор смертности — выход из строя костного мозга, болеть месяц-другой.
  • 1000 рентген: гарантированная смерть, медленная и довольно мучительная. Основной фактор смертности — пищеварительные расстройства и отравление радиотоксинами, умирать около недели.
  • 10000 рентген: достаточно быстрая смерть от выхода из строя нервной системы или разрушения миокарда, лежать без сознания не больше суток.
  • 100000 рентген: похоронят в свинцовом гробу[7].
  • 1000000 рентген: на могиле вместо цветов вырастут гигантские грибы.
  • 10000000 рентген: на фотографиях покойного выпадут все волосы.

Пациенту, схватившему от 500 до 1000 рентген, плохо становится далеко не сразу. Он может ещё около недельки гулять, веселиться, радоваться, что его досрочно демобилизовали. А уже на вторую-третью недельку начинают проявляться последствия отказа костного мозга, и пациент начинает умирать от малокровия.

Был однажды случай, когда самоубийца, работавший в секретном пронумерованном институте, оставил записку «Прощай, жестокий мир», и пустил себе по вене соль радия. Самоубийца не знал матчасти и пустил себе по вене такую дозу, чтобы умереть очень медленно и мучительно. Где-то чуть больше года этого покемона держали в больнице, радуясь уникальному случаю исследовать последствия тяжёлого радиационного отравления. Ему постоянно переливали кровь, чтобы компенсировать последствия выхода из строя костного мозга. В конце концов подопытный умер от раков. Именно так. Во множественном числе. В его теле выросло сразу пять раков разных видов, соревновавшихся, кто быстрее угандошит несчастного самоубийцу.

Чем измеряется облучение[править]

Наиболее известный прибор — дозиметр; он предназначен для измерения полученной человеком эквивалентной дозы, и проградуирован в зивертах или бэрах (устаревшие модели могут быть проградуированы в рентгенах). Дозиметров существует много и разных, в нашей стране широко известны маленькие дозиметры в виде ручки.

Более сложный прибор — дозиметр-радиометр, у него есть и ещё один режим — замерять активность образца в распадах в минуту или секунду.

Счётчик Гейгера — простой и давно известный детектор радиации, один щелчок которого — это пролёт через камеру счётчика одной частицы. Когда он делает вот так: тик-так! тик-так! — это значит, что пора уносить ноги и глотать антирадин на всякий случай. В случае превышения некоторого значения интенсивности зашкаливает, и в этом случае чиселке, которую он показывает, уже нельзя верить. Некоторые современные дозиметры представляют собой улучшенные счётчики Гейгера с прикрученной к ним электроникой для перевода попугаев в зиверты.

Плёночный значок — по принципу действия похож на старинную фотопластинку, но покрыт менее чувствительными солями, которым пофиг на свет. А на радиацию не пофиг, от неё они чернеют. Если значок из белого стал чёрным, значит, носитель значка схватил опасную дозу и ему пора лечиться.

Известные радиоактивные элементы и изотопы[править]

  • Уран. Два распространённых изотопа: уран-235 и уран-238. Оба они альфа-радиоактивны. Разница между ними заключается в способности вступать в реакции деления: первый умеет и любит, а второй умеет, но очень не любит. Поэтому для атомных бомб и реакторов используется только уран-235. Вообще уран — довольно слаборадиоактивный элемент, особенно чистый 238-й (так называемый обеднённый уран), который можно хранить дома в обычном деревянном ящике и нимало от этого не страдать (автор этой статьи держала в руках слиточек обеднённого урана, который знакомые её матери хранили у себя в серванте как сувенир). Правда, он очень горюч, и токсичен.
    • А автор этого примечания видела редкий радиоактивный минерал, в состав которого входил уран. У него настолько слабенькое излучение, что у некоторых гранитов побольше. Камешки у него обычно зелёные, жёлто-зеленые, жёлтые. Ничего, жива-здорова. Проводить такие эксперименты самостоятельно не советую: руды урана нестойкие химически, токсичные, хрупкие и жутко горючие, поэтому их обычно держат в закрытых боксах.
  • Радий. Один распространённый изотоп: радий-226. Весьма сильно радиоактивен (период полураспада 1600 лет), но делительными свойствами не обладает. Поэтому радий ценился в начале XX века, когда радиоактивность ещё только-только изучалась, а о делении никто понятия не имел. Испускает альфу и гамму.
  • Плутоний. Два распространённых изотопа: плутоний-239 и 240. Получается искусственно из урана-238 путём облучения его нейтронами. Оба изотопа умеют и любят делиться, но практичен в этом отношении только 239-й, из которого делают атомные бомбы. 240-й считается вредной примесью. Сильно радиоактивный элемент, хотя и не настолько, насколько радий (период полураспада 239-го порядка 10 000 лет). Альфа- и гамма-активен, в результате распада превращается обратно в уран.
  • Тритий. Радиоактивный изотоп водорода, водород-3. Бета-активен, немного тяжелее обычного водорода, а в остальном такой же — бесцветный горючий лёгкий газ. В результате распада превращается в гелий, период полураспада 12 лет. Весьма и весьма радиоактивен, но испускает чистую бету, никакой гаммы, к тому же очень малоэнергетичную, практически рентген. Поэтому защититься от него легко — если только он не попадает в организм. Зато он может проникнуть через неповрежденную кожу. Из-за малой энергии частиц определить его наличие также довольно непросто.
  • Радон. Тоже радиоактивный газ, но на этот раз тяжёлый и инертный (относится к группе благородных газов). Один распространённый изотоп, радон-222, зашибенно радиоактивен (период полураспада всего 4 суток), испускает альфа-частицу. Повышенная вредность из-за газообразности — попадает в легкие. Используют в медицине для приготовления радоновых ванн (при этом, как сообщает нам Вики, их эффективность научно не доказана).
  • Полоний. Полуметалл, в недавние годы получивший известность как самый страшный яд. Речь идёт об изотопе полонии-210, испускающем чистую альфу, без гаммы, зато со страшной силой (период полураспада 138 дней). Из-за этого «обычными» дозиметрами слабо определим. При попадании в организм вызывает ужасную разруху.
  • Стронций-90, йод-131 и цезий-137. Наиболее опасные осколки от деления урана и плутония, образуются при ядерном взрыве, содержатся в радиоактивных отходах. Йод-131 среди них один из самых опасных — помимо обычных последствий попадания радионуклидов, он летуч, бьёт прицельно по щитовидке, в лучшем случае вызывая её полное рассасывание и обрекая подопытного на пожизненный гипотиреоз и кретинизм. Но уменьшить вред от него несложно — надо лишь принимать внутрь обычный йод в соединениях. В идеале — йодистый калий, но сойдёт и синий йодокрахмал. Внимание выживальщикам: пить чистый медицинский йод — нельзя! Заработаете ожоги пищевода и желудка, что будет хуже возможного облучения. Сделайте хотя бы синий йодокрахмал, смешав йод с мукой или хлебом. Пить, понятно, желательно до или в первый день экспозиции, а не в морге после госпитализации.
  • Кобальт-60. Известен как основное действующее вещество оружия Судного дня — кобальтовой бомбы. Эта так называемая «солёная» бомба заражает огромные территории сильными радиоактивными осадками. Гамма-излучатель большой проникающей способности и интенсивности. Из страха перед последствиями эту бомбу так никто и не испытывал.
  • Калифорний — известен не своей радиоактивностью или периодом полураспада, а прежде всего критической массой — особенно калифорний-252, критическая масса которого — около 5 килограмм, а в некоторых соединениях — аж до 10 грамм, что позволяет некоторым авторам фантазировать об атомных пулях. Вот только цена одной такой пули составляла бы не одну сотню миллионов долларов.
  • Сверхтяжёлые металлы. Элементы с атомными номерами от 104 и выше. Самые радиоактивные элементы во Вселенной, периоды полураспада — от минут до миллисекунд (хотя астат и франций могут посоперничать). Поэтому их можно назвать «виртуальными» элементами — если они есть, то их сразу нет. Но существует теория так называемого «острова стабильности», согласно которой, у некоторых из этих металлов могут быть изотопы, существующие продолжительное время. Элериум-115 — один из них.

Примечания[править]

  1. Здесь важно понимать, что английский термин «radiation» обозначает любые виды излучения и переноса энергии, в том числе и неспособные ионизировать. Английским аналогом для термина радиация является «ionizing radiation»
  2. Очень похожая технология использовалась в электронно-лучевых трубках, которые до сих пор порой применяются в телевизорах и применялись раньше в компьютерных мониторах. Только там вместо натуральной беты использовались искусственно ускоренные электроны.
  3. Правда, кроме изотопов, есть еще такая штука, как ядерные изомеры, и вот они-то могут быть чисто гамма-активными.
  4. Вероятно, по причине вышеупомянутой путаницы с английским словом radiation.
  5. В мемуарах Ломачинского «Курьёзы военной медицины и экспертизы», есть эпизод «Радарная травма»: один умер от множественных ожогов внутренних органов, у двоих необратимо испеклись глаза, четвёртый выздоровел без особых последствий.
  6. Мюоны и мезоны ещё более неустойчивы, но их спасает эйнштейновское растяжение времени — эти засранцы настолько шустрые, что приближаются к скорости света, вследствие чего время их жизни для неподвижного наблюдателя растет на порядки.
  7. Хотя отдельные уникумы чудом выживают